N24 – Bonding

Sigma and Pi Bonds

N24 – Bonding Sigma and Pi Bonds

Target: I can describe and count sigma and pi bonds in a molecule, and how it explains resonance and bond strengths.

Types of Bonds

• When we say "types of bonds" people often assume we mean ionic, covalent or metallic. Or they think we mean single, double, triple. Or polar, non-polar.

• BUT we can also be talking about how the bonds are formed in 3-dimensional space, describing how the orbitals overlap to form the bond.

Sigma Bond

- A sigma (s or o) bond forms when the atomic orbitals of two atoms line up along the axis directly between the nuclei.
 - -Either standard atomic orbitals or hybrids
 - *s-s*, *p-p*, hybrid-hybrid, *s-*hybrid, etc.

<u>Pi Bond</u>

- A pi (p or π) bond forms when the atomic orbitals of two atoms line up above and below the plane where the nuclei are.
 - -The unhybridized p orbitals from the two atoms that are parallel to each other.

Strength of Bonds

- σ bonds are stronger than π bonds.
 - -Sigma orbitals directly overlap between the nuclei
 - -Pi bonds are reaching up and over, they are further apart and less overlap than sigma bonds
 - That makes them weaker.

But if pi bonds aren't as strong, why is a double/triple bond stronger than a single bond? Because there are MORE bonds present, a sigma plus a pi is still stronger than just a sigma!

When Do You Have Each Kind?

Single Bond 1 sigma bond **Double Bond**

1 sigma bond

1 pi bond

Triple Bond 1 sigma bond 2 pi bonds

Example: Ethane

7 single bonds7 σ bonds

Example: Ethene

 $\begin{array}{c} \textbf{4 single bonds} \\ \textbf{4 } \sigma \text{ bonds} \end{array}$

Example: Ethene

4 single bonds 4 σ bonds

5 σ bonds 1 π bond

> *** The pi bond is on top and bottom – that is ONE pi bond not two.

Example: Ethyne

2 single bonds 2 σ bonds

$H-C\equiv C-H$

The De-Localized Electron Model

Pi bonds (π) contribute to the delocalized model of electrons in bonding, and help explain resonance

Electron density from π bonds can be distributed symmetrically all around the ring, above and below the plane.

o Bond - Overlap between a hybrid orbital on one atom and either a hybrid or nonhybridized orbital on another atom

 π Bond – Overlap between unhybridized porbitals on bonded atoms

YouTube Link to Presentation:

https://youtu.be/iGzTW2S7Qf8